

VillageWaters

LEITGIRIAI VILLAGE PILOT (LITHUANIA)

TADAS DRABAVIČIUS

14 03 2018, RIGA

LEITGIRIAFVILLAGE

Site of the WWTP

At the moment there are 40 households with 104 inhabitants

Poultry farm. Previously with a slaughterhouse and meat processing facilities (no longer operational)

Mechanical pretreatment, sand/grit separation

Oxidation ditch

e old ww/p

Biological pond

Built in 1991m.
Design parameters:
✓ Inflow – 200m³/d;
✓ PE – 1777.
Discharge into – Leitė

Aerated pond

Наименование

Main problems of the old system I

Расчетная проектная гидравлическая нагрузка Средняя часовая нагрузка Максимальная секундная нагрузка

Экыпвалентное число жителей

Расчетная объемная нагрузка на аэрсканал

Que	M3/CyT	200
que .	M3/4	8,3
9 s	л/с	II,9
N Gae	чел.	1777
	TSUKROTH/M3/CYT	250

The previous WWTP was designed for much Проектное загрязнение исходн сточной воды по БШКполн пон HELEFTER AND A LEADER AND A LEA TDYSKE more after the closure of the slaughterhouse Производительность аэрска по количеству очищеняня с ческих загрязнений at the poultry farm. The whole system had Нагрузка на активный ил в арт канале to work with below minimum loading which had a great negative effect to the Lonentracija abyvais dumleo Концентрация активного ила в performance of the WWTP. вэрсканале Уклон откосов аэроканала и

The capacity of the system was scaled down and tuned to meet current demands.

Технические денные:

(в аэроканале)

- рабочая длина ротора

Механдческие горизонтальные

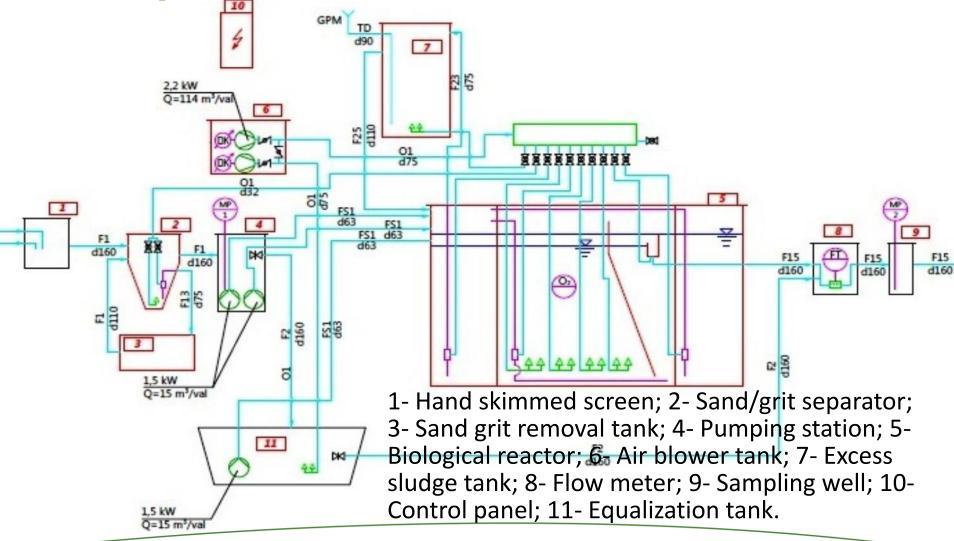
спитальные зэраторы типа АС

VillageWaters

ID7IOB

Main problems of the old system II

All the treatment steps were open (without covering or insulation) so during the cold season (October -April) weren't operational. The new system doesn't share this weakness and can sustain stable performance and treatment efficiency.



Main problems of the old system III 6

The process required constant maintenance and daily visits of the service staff. Changing the operation modes (decantation) had to be done manually.

Composition of the reconstructed WWTP

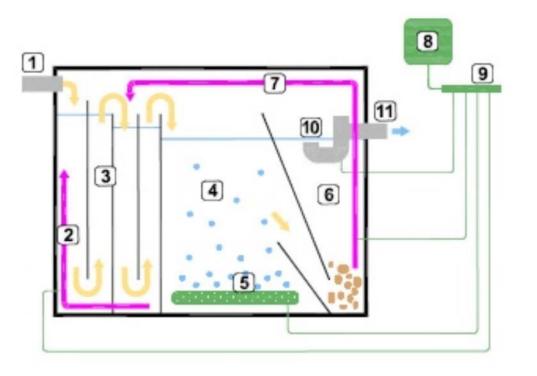
Mechanical pretreatment

4

1- Hand skimmed screen;
 2- Sand/grit separator;
 3- Sand grit removal tank;
 4- Pumping station.

3

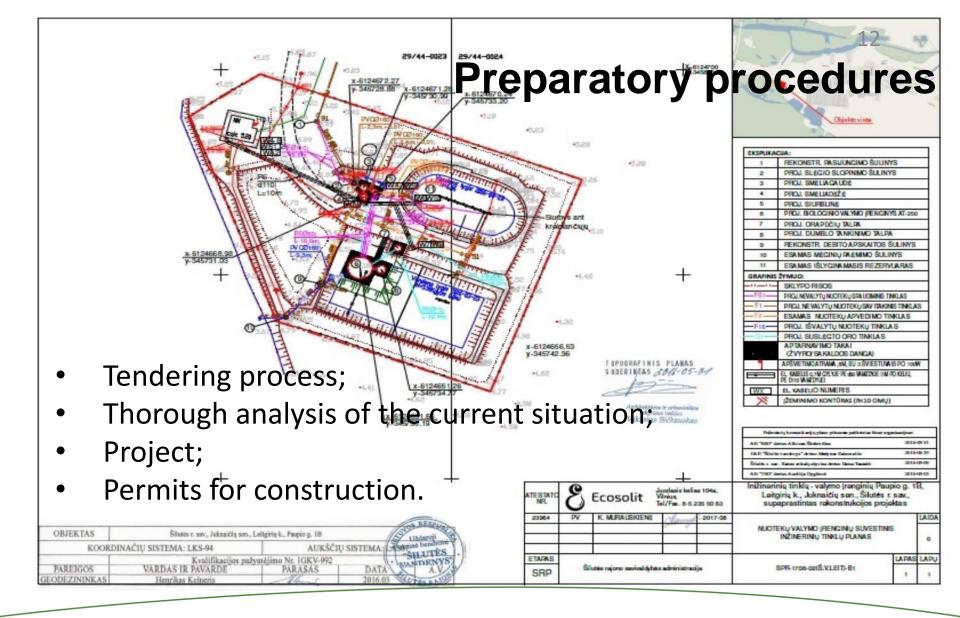
Biological treatment step


5- Biological reactor;6- Air blower tank;7- Excess sludge tank.

VillageWaters

6

Technological scheme of the biological treatment step

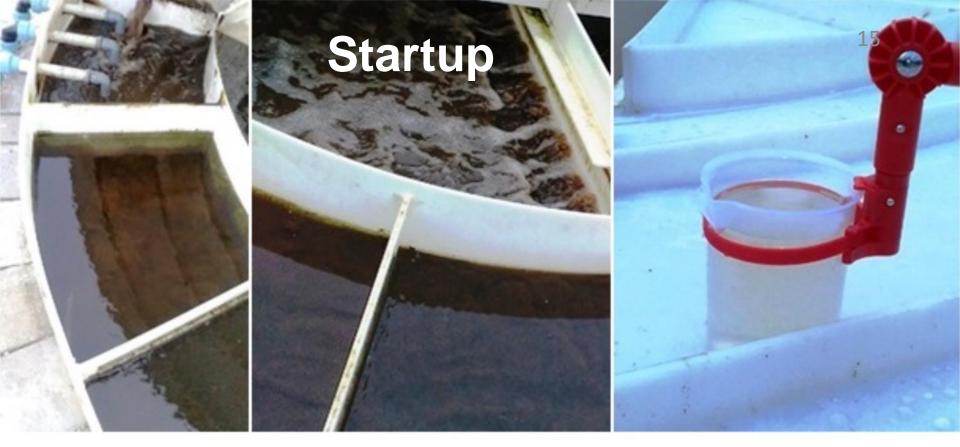

- 1. Inflow
- 2. Airlift No.1
- 3. Non-aerated chambers (anaerobic/anoxic)
- 4. Aerated chamber (oxic)
- 5. Aeration system
- 6. Final clarification chamber
- 7. Airlift No.2
- 8. Air blower
- 9. Air distribution system
- 10. Flow regulator
- 11. Outflow;

Equalization tank

Prevents process disruption during extreme inflow periods; Equipped with a new aeration system.

Baltic Sea Region

Transportation 10


Installation of the

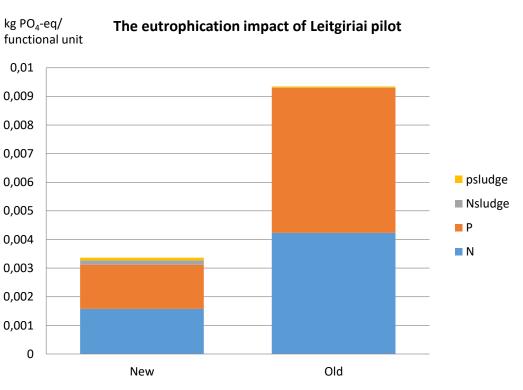
Setting onto a foundation

Backfilling in steps

Last step, after connecting the piping

After all the construction and installation works are complete, startup of the system can be started:

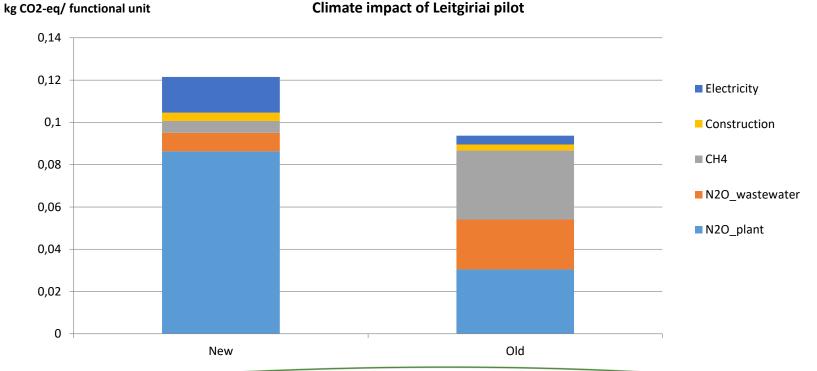
- Filling with active sludge;
- Tuning the dosing, aeration and circulation system.



Lithuania, Leitgiriai

Leitgiriai WWTP was built in 1991. It consisted of a grit chamber, a periodic operation ditch and pond – both with mechanical aeration, and a settling pond. Leitgiriai's wastewater treatment plant (WWTP) is being selected because it uses a typical biological treatment technology (the main treatment facility of which – periodical operation ditch with aeration).

Eutrophication impact


The eutrophication impact of Leitgiriai pilot is 0.0034 kg PO₄-eq/ functional unit after the change and 0.0093 kg PO₄-eq/ functional unit before the change. The part of nitrogen is 47 % and phosphorus 46 %. The parts of nitrogen and phosphorus are near to each other because of almost the same purification efficiency: for phosphorus 80 % and for nitrogen 92 % (Figure 14). Before the change the part of nitrogen is 45 % and phosphorus 54 %. The eutrophication impact reduces because of the changes 64 %.

Climate impact

The climate impact of Leitgiriai pilot was 0.12 kg CO2-eq/ functional unit after the change, and 0.094 kg CO2-eq/ functional unit before the change (Figure 15). After the change 78 % comes from N2O, 5 % from methane, 3.2 % from construction and 14 % from electricity and before the change 58 % from N2O, 35 % from methane, 3.0 % from construction and 4.4 % from electricity. New technology needs more electricity and efficient nitrogen removal causes more nitrous oxide emissions.

Climate impact of Leitgiriai pilot

Overall conclusions

- Complete renewal of all the treatment steps;
- Analysis of the current situation enabled selecting the best possible solutions;
- All determined drawbacks of the previous technology were eliminated;
- Cooperation between all participating patties hastened and optimized the procedures from first analysis to final startup of the system;
- The construction process was very fast, select materials durable and ensure long term service.
- Economic benefits:
- ✓ Minimalized maintenance necessity;
- ✓ No chemicals required;
- ✓ Minimalized running costs.

Overall conclusions

Electricity consumption

Baltic Sea Region

Thank You for attention!

Tadas Drabavičius Engineer Šilutė District municipality Phone: +370 612 33059 E-mail: tadas@august.lt

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND